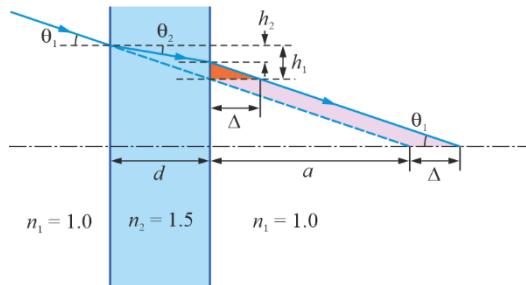


Answers to Homework 1

Problem 1.1



Consider the general geometry shown in the above figure. A light ray entering and exiting a slab, of refractive index n_2 that is different from that of the ambient n_1 and a thickness d , will intersect with the reference axis at a shifted location by a distance Δ from its original intersection point of distance a from the exit surface. From simple geometry of the light purple parallelogram, this shift Δ is equal to the base of the orange triangle, whose height is

$$h = h_1 - h_2,$$

where

$$h_1 = d \tan \theta_1,$$

$$h_2 = d \tan \theta_2,$$

and based on the Snell's Law,

$$n_1 \sin \theta_1 = n_2 \sin \theta_2,$$

which leads to

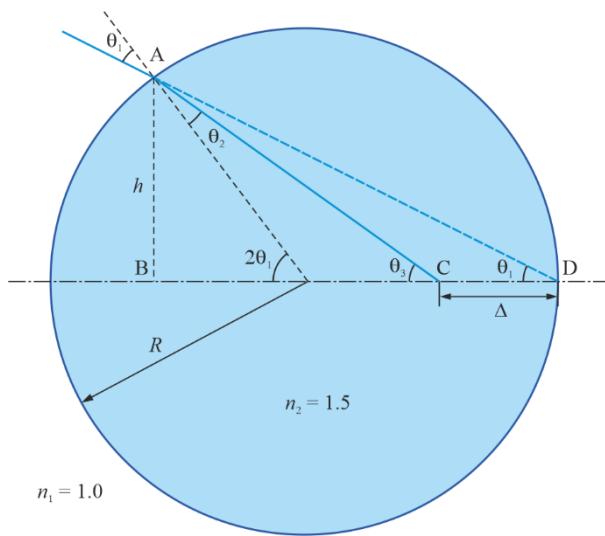
$$\theta_2 = \arcsin\left(\frac{n_1}{n_2} \sin \theta_1\right).$$

Therefore, we can evaluate the shift as a function of θ_1 , and d :

$$\Delta(\theta_1, d) = h / \tan \theta_1 = d \frac{\tan \theta_1 - \tan \theta_2}{\tan \theta_1} = d \left\{ 1 - \tan \left[\arcsin \left(\frac{n_1}{n_2} \sin \theta_1 \right) \right] \right\} / \tan \theta_1$$

As a comparison, the difference between the two interaction points at $\theta_1 = 30^\circ$ and $\theta_1 = 1^\circ$ when $d = 1$ cm is then $\Delta(30^\circ, 1 \text{ cm}) - \Delta(1^\circ, 1 \text{ cm}) = 0.0542 \text{ cm}$.

Problem 1.2



Consider the general geometry shown in the above figure. A light ray incident upon a sphere, of refractive index n_2 that is different from that of the ambient n_1 and a radius R , will intersect with the reference axis passing the center of the sphere at a shifted location by a distance Δ from its original intersection point of distance R from the center. From simple geometry, we have

$$h = R \sin 2\theta_1$$

and

$$\theta_3 = 2\theta_1 - \theta_2,$$

where the Snell's Law requires that

$$\theta_2 = \arcsin \left(\frac{n_1}{n_2} \sin \theta_1 \right).$$

The distance Δ is the difference between the base of triangle ABD and the base of triangle ABC. Therefore, we can evaluate the shift as a function of θ_1 , and R :

$$\Delta(\theta_1, R) = \frac{h}{\tan \theta_1} - \frac{h}{\tan \theta_3} = R \sin 2\theta_1 \left[\cot \theta_1 - \cot \left(2\theta_1 - \arcsin \frac{n_1 \sin \theta_1}{n_2} \right) \right].$$

As a comparison, the difference between the two interaction points at $\theta_i = 30^\circ$ and $\theta_i = 1^\circ$ when $R = 0.5$ cm is then $\Delta(30^\circ, 0.5 \text{ cm}) - \Delta(1^\circ, 0.5 \text{ cm}) = -0.0899 \text{ cm}$.

NOTE: Δ does not necessarily cause aberrations. If Δ is consistent for rays of all angles, the system is still considered aberration-free. It is the inconsistency in Δ for rays of different angles that causes aberrations.